2017考研高等數(shù)學(xué)重點(diǎn)知識(shí)
查看(415) 回復(fù)(0) |
|
喇叭花
|
發(fā)表于 2016-08-11 09:30
樓主
1、函數(shù)、極限與連續(xù):主要考查分段函數(shù)極限或已知極限確定原式中的常數(shù);討論函數(shù)連續(xù)性和判斷間斷點(diǎn)類型;無(wú)窮小階的比較;討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)或確定方程在給定區(qū)間上有無(wú)實(shí)根。
2、一元函數(shù)微分學(xué):主要考查導(dǎo)數(shù)與微分的求解;隱函數(shù)求導(dǎo);分段函數(shù)和絕對(duì)值函數(shù)可導(dǎo)性;洛比達(dá)法則求不定式極限;函數(shù)極值;方程的根;證明函數(shù)不等式;羅爾定理、拉格朗日中值定理、柯西中值定理以及輔助函數(shù)的構(gòu)造;最大值、最小值在物理、經(jīng)濟(jì)等方面實(shí)際應(yīng)用;用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。 3、一元函數(shù)積分學(xué):主要考查不定積分、定積分及廣義積分的計(jì)算;變上限積分的求導(dǎo)、極限等;積分中值定理和積分性質(zhì)的證明題;定積分的應(yīng)用,如計(jì)算旋轉(zhuǎn)面面積、旋轉(zhuǎn)體體積、變力作功等。 4、多元函數(shù)微分學(xué):主要考查偏導(dǎo)數(shù)存在、可微、連續(xù)的判斷;多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)、方向?qū)?shù);多元函數(shù)極值或條件極值在與經(jīng)濟(jì)上的應(yīng)用;二元連續(xù)函數(shù)在有界平面區(qū)域上的最大值和最小值。 5、多元函數(shù)的積分學(xué):包括二重積分在各種坐標(biāo)下的計(jì)算,累次積分交換次序;三重積分,曲線、曲面積分是數(shù)一的考試重點(diǎn),主要涉及到如何計(jì)算。 6、微分方程及差分方程:主要考查一階微分方程的通解或特解;二階線性常系數(shù)齊次和非齊次方程的特解或通解;微分方程的建立與求解。差分方程的基本概念與一介常系數(shù)線形方程求解方法跨章節(jié)、跨科目的綜合考查題,近幾年出現(xiàn)的有:微積分與微分方程的綜合題;求極限的綜合題等。 7、無(wú)窮級(jí)數(shù):主要包括數(shù)項(xiàng)級(jí)數(shù)斂散性的判別;冪級(jí)數(shù)求收斂半徑、收斂區(qū)間和收斂域;冪級(jí)數(shù)求和函數(shù);將函數(shù)展開成冪級(jí)數(shù);傅立葉級(jí)數(shù)的收斂的狄利克雷收斂定理,將函數(shù)展開成正弦、余弦級(jí)數(shù)。 注意:首先看定義域然后判斷函數(shù)的單調(diào)區(qū)間求極值和最值,利用公式判斷在指定區(qū)間內(nèi)的凹凸性或者用函數(shù)的二階導(dǎo)數(shù)判斷(注意二階導(dǎo)數(shù)的符號(hào)) |
回復(fù)話題 |
||
上傳/修改頭像 |
|
|