網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)
不等式證明是考研數(shù)學(xué)試卷中的中上等難度題目,下面是小編為同學(xué)們簡(jiǎn)單講一下不等式的幾種證明方法,希望同學(xué)們可以有所啟發(fā),弄清楚這種類型題。
利用微分中值定理:微分中值定理在高數(shù)的證明題中是非常大的,在等式和不等式的證明中都會(huì)用到。當(dāng)不等式或其適當(dāng)變形中有函數(shù)值之差時(shí),一般可考慮用拉格朗日中值定理證明?挛髦兄刀ɡ硎抢窭嗜罩兄刀ɡ淼囊粋(gè)推廣,當(dāng)不等式或其適當(dāng)變形中有兩個(gè)函數(shù)在兩點(diǎn)的函數(shù)值之差的比值時(shí),可考慮用柯西中值定理證明。
利用定積分中值定理:該定理是在處理含有定積分的不等式證明中經(jīng)常要用到的理論,一般只要求被積函數(shù)具有連續(xù)性即可;舅悸肥峭ㄟ^(guò)定積分中值定理消去不等式中的積分號(hào),從而與其他項(xiàng)作大小的比較,進(jìn)而得出證明。
除此之外,最常用的方法是左右兩邊相減構(gòu)造輔助函數(shù),若函數(shù)的最小值為0或?yàn)槌?shù),則該函數(shù)就是大于零的,從而不等式得以證明。
來(lái)源未注明“中國(guó)考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如涉及版權(quán)問(wèn)題,請(qǐng)聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來(lái)源",并自負(fù)版權(quán)等法律責(zé)任。
來(lái)源注明“中國(guó)考研網(wǎng)”的文章,若需轉(zhuǎn)載請(qǐng)聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)