網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)
極限問(wèn)題一直是考研數(shù)學(xué)中的考察重點(diǎn),很多考研er在面對(duì)題型的變化時(shí),會(huì)覺(jué)得有些無(wú)從下手,下面給大家盤(pán)點(diǎn)一下求極限的16個(gè)方法,讓你輕松應(yīng)對(duì)各種情況。
首先對(duì)極限的總結(jié)如下。極限的保號(hào)性很重要就是說(shuō)在一定區(qū)間內(nèi)函數(shù)的正負(fù)與極限一致。
1、極限分為一般極限,還有個(gè)數(shù)列極限
(區(qū)別在于數(shù)列極限是發(fā)散的,是一般極限的一種)。
2、解決極限的方法如下
1)等價(jià)無(wú)窮小的轉(zhuǎn)化,(只能在乘除時(shí)候使用,但是不是說(shuō)一定在加減時(shí)候不能用但是前提是必須證明拆分后極限依然存在)e的X次方-1或者(1+x)的a次方-1等價(jià)于Ax等等。全部熟記。(x趨近無(wú)窮的時(shí)候還原成無(wú)窮小)
2)洛必達(dá)法則(大題目有時(shí)候會(huì)有暗示要你使用這個(gè)方法)
首先他的使用有嚴(yán)格的使用前提。必須是X趨近而不是N趨近。(所以面對(duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件。還有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無(wú)窮的不可能是負(fù)無(wú)窮!)必須是函數(shù)的導(dǎo)數(shù)要存在!(假如告訴你g(x),沒(méi)告訴你是否可導(dǎo),直接用無(wú)疑是死路一條)必須是0比0,無(wú)窮大比無(wú)窮大!當(dāng)然還要注意分母不能為0。
洛必達(dá)法則分為三種情況
1)0比0無(wú)窮比無(wú)窮時(shí)候直接用
2)0乘以無(wú)窮,無(wú)窮減去無(wú)窮(應(yīng)為無(wú)窮大于無(wú)窮小成倒數(shù)的關(guān)系)所以無(wú)窮大都寫(xiě)成了無(wú)窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成1中的形式了
3)0的0次方,1的無(wú)窮次方,無(wú)窮的0次方
對(duì)于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來(lái)了,就是寫(xiě)成0與無(wú)窮的形式了,(這就是為什么只有3種形式的原因,ln(x)兩端都趨近于無(wú)窮時(shí)候他的冪移下來(lái)趨近于0,當(dāng)他的冪移下來(lái)趨近于無(wú)窮的時(shí)候ln(x)趨近于0)
3、泰勒公式
(含有e^x的時(shí)候,尤其是含有正余旋的加減的時(shí)候要特變注意!)e^x展開(kāi),sinx展開(kāi),cos展開(kāi),ln(1+x)展開(kāi)對(duì)題目簡(jiǎn)化有很好幫助
4、面對(duì)無(wú)窮大比上無(wú)窮大形式的解決辦法。
取大頭原則最大項(xiàng)除分子分母!看上去復(fù)雜處理很簡(jiǎn)單。
5、無(wú)窮小與有界函數(shù)的處理辦法
面對(duì)復(fù)雜函數(shù)時(shí)候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定要注意這個(gè)方法。面對(duì)非常復(fù)雜的函數(shù)可能只需要知道它的范圍結(jié)果就出來(lái)了!
6、夾逼定理
(主要對(duì)付的是數(shù)列極限)這個(gè)主要是看見(jiàn)極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。
7、等比等差數(shù)列公式應(yīng)用
(對(duì)付數(shù)列極限)(q絕對(duì)值符號(hào)要小于1)
8、各項(xiàng)的拆分相加
(來(lái)消掉中間的大多數(shù))(對(duì)付的還是數(shù)列極限)可以使用待定系數(shù)法來(lái)拆分化簡(jiǎn)函數(shù)。
9、求左右求極限的方式
(對(duì)付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,Xn的極限與Xn+1的極限是一樣的,應(yīng)為極限去掉有限項(xiàng)目極限值不變化。
10、兩個(gè)重要極限的應(yīng)用。
這兩個(gè)很重要!對(duì)第一個(gè)而言是x趨近0時(shí)候的sinx與x比值。第2個(gè)就如果x趨近無(wú)窮大無(wú)窮小都有對(duì)有對(duì)應(yīng)的形式(第二個(gè)實(shí)際上是用于函數(shù)是1的無(wú)窮的形式)(當(dāng)?shù)讛?shù)是1的時(shí)候要特別注意可能是用第二個(gè)重要極限)
11、還有個(gè)方法,非常方便的方法。
就是當(dāng)趨近于無(wú)窮大時(shí)候,不同函數(shù)趨近于無(wú)窮的速度是不一樣的。x的x次方快于x!,快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對(duì)數(shù)函數(shù)(畫(huà)圖也能看出速率的快慢)。當(dāng)x趨近無(wú)窮的時(shí)候他們的比值的極限一眼就能看出來(lái)了
12、換元法
是一種技巧,不會(huì)對(duì)某一道題目而言就只需要換元,但是換元會(huì)夾雜其中
13、假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。
14、還有對(duì)付數(shù)列極限的一種方法,就是當(dāng)你面對(duì)題目實(shí)在是沒(méi)有辦法走投無(wú)路的時(shí)候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15、單調(diào)有界的性質(zhì)
對(duì)付遞推數(shù)列時(shí)候使用證明單調(diào)性。
16、直接使用求導(dǎo)數(shù)的定義來(lái)求極限
(一般都是x趨近于0時(shí)候,在分子上f(x)加減某個(gè)值)加減f(x)的形式,看見(jiàn)了有特別注意)(當(dāng)題目中告訴你F(0)=0時(shí),f(0)的導(dǎo)數(shù)=0的時(shí)候就是暗示你一定要用導(dǎo)數(shù)定義!)
來(lái)源未注明“中國(guó)考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如涉及版權(quán)問(wèn)題,請(qǐng)聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來(lái)源",并自負(fù)版權(quán)等法律責(zé)任。
來(lái)源注明“中國(guó)考研網(wǎng)”的文章,若需轉(zhuǎn)載請(qǐng)聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)