網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
等差數(shù)列?等比數(shù)列?似乎是高中數(shù)學(xué)的重點,怎么高等數(shù)學(xué)也有這個知識點呢,那你可要反思一下自己了,等差等比數(shù)列在級數(shù)方面都是有很大用處的,今天就帶你學(xué)習(xí)一下久違的等差、等比數(shù)列!
1、等差數(shù)列
Sn=n(a1+an)/2或Sn=[2na1+n(n-1)d]/2注:an=a1+(n-1)d
轉(zhuǎn)換過程:Sn=n(a1+an)/2=n{a1+[a1+(n-1)d]}/2=n[2a1+(n-1)d]/2=[2na1+n(n-1)d]/2
2、等比數(shù)列
Sn=n*a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)(q≠1)(n為比值,a為項數(shù))
你知道這兩個就證明冪級數(shù),你學(xué)的是一點問題都沒有了。那現(xiàn)在問題是你不知道為什么要逐項求導(dǎo)和逐項積分了?
聽好了,以前初等數(shù)學(xué)就是用一些初等變換去對式子變形——比如把原式變成兩個等比或者等差數(shù)列,然后用等比等差數(shù)列求和公式求出原式的N項和。
現(xiàn)在高等數(shù)學(xué)就不好搞了,就不能用一些初等變換(比如分母有理化,比如分子加一減一等等)的方式去分成幾項有規(guī)律的數(shù)列了,那么,我們現(xiàn)在怎么辦?要回到高中我們就只有求神了。
但是,當(dāng)我們現(xiàn)在學(xué)了高等數(shù)學(xué)后,我們就可以通過求導(dǎo)或者積分的方式把他變成我們所了解的等比和等差數(shù)列了,那多爽,是吧!通過求導(dǎo)就回到高中!
不要去想什么逐項求導(dǎo)和逐項積分亂七八糟的,其實就是對通項求導(dǎo)或者積分。
先說求導(dǎo):目的就是把我們不論用初等數(shù)學(xué)怎么變化都不能變成等比數(shù)列的式子變成等比數(shù)列!
注意觀察:例如:S(X)=∑(2~無窮){[(-1)^n][x^(n-1)]/n-1}這個式子你用高中的方法去分成幾項等比數(shù)列嘛,你一定會很悲劇的。通過觀察:求一次導(dǎo)x^(n-1)的導(dǎo)數(shù)不就是(n-1)[x^(n-2)],分子的n-1不是可以和分母的n-1約掉啊!(注意了哈:逐項求導(dǎo)說的十分猥瑣,其實就是對∑(2~無窮){[(-1)^n][x^(n-1)]/n-1}求導(dǎo))
求導(dǎo)你要這樣想n是常數(shù),X是變量,對X求導(dǎo)(其實N就是常數(shù),我怕你搞錯了,我現(xiàn)在沒有辦法知道你的基礎(chǔ),所以當(dāng)高中生在教)。
求導(dǎo)以后的數(shù)列變成∑(2~無窮){[(-1)^n][x^(n-2)],求了導(dǎo)之后你展開:把N=2帶進去等于1把N等于3帶進去等于(-X)把N等于4帶進去等于(X^2)把5帶進去等于(-x^3).......發(fā)現(xiàn)沒有,求導(dǎo)之后的通項居然是個q=(-x)a1=1的等比數(shù)列!那我們的目的達到了!
這個等比數(shù)列的求和公式Sn=a1(1-q^n)/(1-q)得:1/(1+x)|x|<1才收斂哈!不然考試不寫|x|<1要扣粉的哈!求導(dǎo)之后的通項的和我們求到了1/(1+x)|x|<1那是不是我們要積分一次才是原來的題目啊!求導(dǎo)和積分是逆運算的嘛!S(X)=S(0)+1/(1+T)求積分(從0到X)=ln(1+x)|x|<1
其實求導(dǎo)的目的就是把式子變成我們可以處理的等比數(shù)列,再求和,最后把和積分回來就對了,說的這樣深邃!
再說為什么要積分:目的還是把式子變成我們可以處理的等比數(shù)列!什么逐項積分!說的太猥瑣了,其實就是對通項積分,把式子能展開成等比數(shù)列就對了!NND不說猥瑣點難道就體現(xiàn)不出編教材的人的水平嗎?看著啊,我現(xiàn)在就按照同濟教材的立體為例子:給你玩一下:∑(1~無窮)n(x^n-1)
解:S(x)=∑(1~無窮)n(x^n-1)的和函數(shù)仔細觀察:(x^n-1)積分是不是分母出現(xiàn)了n,正好和分子的n越掉。直接對)∑(1~無窮)n(x^n-1)積分哈~~~不要考慮什么逐項積分,從此你就當(dāng)沒有聽過逐項積分這種說法。
積分后就變成∑(x^n),原式是沒有辦法處理的,但是有了這個式子之后,展開把N=(1、2、3、4。。。。)帶入就發(fā)現(xiàn)是個很標準的q=x的等比數(shù)列了。這個等比數(shù)列求和為:x/(1-x)。x/(1-x)是積分后的和哈,那要求原來的和簡單嘛,求一次導(dǎo)就對了:1/[1-x)^2]
►總結(jié):原式我不能處理怎么辦,求導(dǎo)或者積分后變成等比數(shù)列,我求和,求完了積分或者求導(dǎo)回去就對了!
注意:不光是處理成等比數(shù)列!那是在高中!現(xiàn)在給你增加幾個數(shù)列!說白了,你只要通過求導(dǎo)或者積分后變成這些數(shù)列都是可以求和的,記得再變回去!e^x
=1+x+x^2/2!+x^3/3!+...+x^n/n!+...ln(1+x)=x-x^2/3+x^3/3-...(-1)^(k-1)*x^k/k+...(|x|<1)sinx=x-x^3/3!+x^5/5!-...(-1)^(k-1)*x^(2k-1)/(2k-1)!+...(-∞
求導(dǎo)或者積分后你要展開觀察是什么數(shù)列,只要是等號右邊的東西,你就直接得到他的和是等號左邊了,再記得變回去!
來源未注明“中國考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其內(nèi)容的真實性,如涉及版權(quán)問題,請聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來源",并自負版權(quán)等法律責(zé)任。
來源注明“中國考研網(wǎng)”的文章,若需轉(zhuǎn)載請聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號