網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)
2019考研數(shù)學(xué)一大綱公布,我們對(duì)大綱中線性代數(shù)部分的考試內(nèi)容進(jìn)行了相關(guān)整理,內(nèi)容如下:
一、行列式
行列式的概念和基本性質(zhì) 行列式按行(列)展開定理
二、矩陣
矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣矩陣的秩 矩陣的等價(jià) 分塊矩陣及其運(yùn)算
三、向量
向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組 等價(jià)向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量空間及其相關(guān)概念 n維向量空間的基變換和坐標(biāo)變換 過渡矩陣 向量的內(nèi)積 線性無關(guān)向量組的正交規(guī)范化方法 規(guī)范正交基 正交矩陣及其性質(zhì)
四、線性方程組
線性方程組的克拉默(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質(zhì)和解的結(jié)構(gòu) 齊次線性方程組的基礎(chǔ)解系和通解 解空間 非齊次線性方程組的通解
五、矩陣的特征值和特征向量
矩陣的特征值和特征向量的概念、性質(zhì) 相似變換、相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件 相似對(duì)角矩陣 實(shí)對(duì)稱矩陣的特征值、特征向量及其相似對(duì)角矩陣
六、二次型
二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理二 次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性
來源未注明“中國考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如涉及版權(quán)問題,請(qǐng)聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來源",并自負(fù)版權(quán)等法律責(zé)任。
來源注明“中國考研網(wǎng)”的文章,若需轉(zhuǎn)載請(qǐng)聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號(hào)