網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
個人簡介
陳正,男,山東棗莊人。博士,副教授。2004年7月畢業(yè)于山東理工大學(xué),獲學(xué)士學(xué)位。2009年10月畢業(yè)于西北工業(yè)大學(xué)凝固技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,獲工學(xué)博士學(xué)位,師從中科院周堯和院士。2009年12月至今在中國礦業(yè)大學(xué)材料學(xué)院工作;2016-2017年于賓夕法尼亞州立大學(xué)訪問研究。
科研方向:太空條件下金屬材料極端非平衡凝固理論及相關(guān)性,立足3D打印的穩(wěn)定安全的納米結(jié)構(gòu)材料形成與設(shè)計,非晶、高熵等亞穩(wěn)材料設(shè)計及功能性,特種鑄造理論及工藝研究。
主要項(xiàng)目:主持國家自然基金面上項(xiàng)目、國家自然基金青年項(xiàng)目、江蘇省自然基金面上項(xiàng)目、中國博士后基金項(xiàng)目、江蘇省博士后基金項(xiàng)目、國家重點(diǎn)實(shí)驗(yàn)室項(xiàng)目、學(xué)科前沿專項(xiàng)等項(xiàng)目,參與國家自然基金重大項(xiàng)目1項(xiàng)、自然基金面上項(xiàng)目2項(xiàng),江蘇省產(chǎn)學(xué)研轉(zhuǎn)化項(xiàng)目1項(xiàng);入選中國礦業(yè)大學(xué)第三批起航計劃、第九批青年骨干教師和青年學(xué)術(shù)帶頭人,獲得江蘇省“雙創(chuàng)計劃”人才項(xiàng)目支持?蒲姓撐模涸贏cta Mater.、Scripta Mater.、J. All. Compd.、Mater. Sci. Eng. A.等金屬材料領(lǐng)域國際知名期刊發(fā)表SCI論文46篇,出版英文專著1部,文章總他引300余篇次。
主要獲獎:獲得陜西省高?萍家坏泉、優(yōu)秀畢設(shè)指導(dǎo)教師、優(yōu)秀班主任等。中國材料研究學(xué)會會員、國家自然基金等項(xiàng)目評審專家、Philosophical Magazine Letters等十余種國際期刊審稿專家。
教學(xué):主講材料工程基礎(chǔ)、現(xiàn)代凝固技術(shù)、先進(jìn)材料成型技術(shù)及理論等本科及研究生課程,獲中國礦業(yè)大學(xué)教學(xué)成果一等獎1項(xiàng),主編教材1部。指導(dǎo)本科生參加國家大學(xué)生創(chuàng)新計劃、材料設(shè)計大賽項(xiàng)目、江蘇省創(chuàng)新創(chuàng)業(yè)大賽等并多次獲獎。
Email:chenzheng1218@163.com
研究領(lǐng)域
主要從事納米晶、非晶等亞穩(wěn)功能材料制備及穩(wěn)定性研究,金屬塊體及表面快速凝固理論與技術(shù),特種鑄造理論及工藝研究。
主要學(xué)術(shù)貢獻(xiàn)如下:
1 建立了納米晶粒長大全熱-動力學(xué)模型。該模型可精確判斷納米晶粒溶質(zhì)分布的初始狀態(tài)及其對隨后晶粒生長及偏聚的影響。首次提出納米晶粒生長過程的三階段:動力學(xué)生長階段;動-熱力學(xué)轉(zhuǎn)化階段;熱力學(xué)穩(wěn)定階段。系列成果發(fā)表在冶金類一區(qū)Acta Mater等期刊上,獲得德國哥廷根大學(xué)材料學(xué)院院長,Acta主編R.Kirchheim教授高度評價。
2 通過極冷、深過冷快速凝固技術(shù)及真空熱處理技術(shù)成功制備高穩(wěn)定Fe-B納米晶和Fe-Cu微米晶并深入剖析了快速凝固亞穩(wěn)相晶粒形成、轉(zhuǎn)變及殘余機(jī)理。該系列成果發(fā)表在一類國際期刊Acta Mater,J. All. Compd等上,評價為成果具有明顯創(chuàng)新性。
3 提出并闡明了固態(tài)相變中存在的晶粒的正常-異常-正常的交替演變理論。建立了快速凝固中非平衡遺傳性在異常及正常晶粒生長與溶質(zhì)拖拽間產(chǎn)生的本質(zhì)關(guān)聯(lián)理論。
科研項(xiàng)目
國家自然科學(xué)基金(51101169)“高穩(wěn)定Fe基納米晶的可控制備及其熱穩(wěn)定機(jī)制研究”,2012.1~2014.12
陳正,高性能納米結(jié)構(gòu)材料一體化設(shè)計及溶質(zhì)共偏聚機(jī)理研究,江蘇省自然科學(xué)基金(BK20141126),項(xiàng)目主持人,10萬元,2014.7-2017.6
江蘇省博士后科學(xué)基金,1401052B,陳正,弱偏析納米合金的高溫穩(wěn)定性設(shè)計及溶質(zhì)共偏聚機(jī)理研究,項(xiàng)目主持人,5萬元,2014.7-2016.6
中國博士后科學(xué)基金第54批面上資助,一等資助(2013M540475),“高穩(wěn)定塊體Fe基納米晶的可控制備及其熱穩(wěn)定機(jī)制研究” 2013.10~2015.10
納米多元單相合金中溶質(zhì)共偏聚及與晶界交互機(jī)理研究2014QNA07,10萬, 2010-09-01-2013-12-01,中央高校科研業(yè)務(wù)費(fèi)
中國礦業(yè)大學(xué)青年科技基金(2010QNA06)“納米Fe基合金的極端非平衡凝固及熱穩(wěn)定性研究”,2010.9~2013.9
西北工業(yè)大學(xué)開放課題(SKLSP201119),納米Fe基合金的極端非平衡凝固及熱穩(wěn)定性研究,2011.01-2013.12
金屬基碳化物材料的礦山機(jī)械耐磨損抗腐蝕零部件研究,中國礦業(yè)大學(xué)盱眙礦山裝備與材料研發(fā)中心創(chuàng)新基金,CXJJ201305
高性能鋼基金屬陶瓷螺桿制造技術(shù),江蘇省科技創(chuàng)新與成果轉(zhuǎn)化(重大科技支撐與自主創(chuàng)新)專項(xiàng)引導(dǎo)資金,BY2012083
發(fā)表論文
[1] Z. Chen, Y.Y. Tang, Q. Tao, Q. Chen, T. Liang, The mechanism of grain growth and thermal stability in Ni-1 at.% Pb alloy, Journal of Alloys and Compounds, 662 (2016) 628-633.
[2] Q. Chen, Z. Chen, F. Liu, R.X. Cui, T. Liang, The investigation of recrystallization developed in the largely undercooled Ni–3 at.% Sn alloy, Journal of Alloys and Compounds, 638(25) (2015) 109–114.
[3] Z. Chen, X.Q. Yang, F. Liu, R.X. Cui, C.H. Zhang, Grain growth and thermal stability in nanocrystalline Fe-B alloys prepared by melt spinning, International Journal of Materials Research, 2015, 106 (5) 488-493.
[4] Z. Chen, Q. Chen, F. Liu, X.Q. Yang, Y. Fan, C.H. Zhang, A.M. Liu, The influence of solid-state grain growth mechanism on the microstructure evolution in undercooled Ni-10at.%Fe alloy, Journal of Alloys and Compounds, 622 (2015) 1086–1092.
[5] Zheng Chen, Yanan Yang, et al, Recalescence effect simulation and microstructure evolution of undercooled Fe82B17Si1 alloy, Acta Metallurgica Sinica, 50(7) (2014) 795-801.
[6] Z. Chen, Y.Y. Tang, Q. Chen, R.X. Cui, F. Liu, Z.H. Zhang, The interrelated effect of initial melt undercooling, solute trapping and solute drag on the grain growth mechanism of as-solidified Ni-B alloys, Journal of Alloys and Compounds, 610 (2014) 561-566
[7] Tao Liang, Zheng Chen, Xiaoqin Yang, Ning Liu, Yanan Yang, Chenlong Duan, Yuemin Zhao, Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy, International Journal of Materials Research, 105 (2014) E 854-860.
[8] Z. Chen, F. Liu, X.Q. Yang, C.J. Shen, Y.M. Zhao, A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition, Journal of Alloys and Compounds, 608 (2014) 338–342
[9] Zheng Chen, Yanan Yang, et al, Research on grain refinement and recrystallization mechanism in undercooled Ni-1at.%Fe alloy, Rare Metal Materials and Engineering, 2014 43(2) 336-340.
[10] 張 樂,陳 正,楊亞楠,唐躍躍,新型Al-Ti-B-Re中間合金對工業(yè)純鋁細(xì)化工藝設(shè)計及細(xì)化機(jī)理研究,材料導(dǎo)報,27(9) 2013 100-103.
[11] Z. Chen, F. Liu, X.Q. Yang, Y.Z. Chen, C.L. Yang, G.C. Yang, Y.H. Zhou, The interrelated effect of activation energy and grain boundary energy on grain growth in nanocrystalline materials, International Journal of Materials Research (2013) 104 (9); 1–6. (SCI: 2013 241VP, EI: 20114214440946)
[12] *Yang, Xiaoqin; Xu, Shaoping; Chen, Zheng; Liu, Jiongtian Improved nickel-olivine catalysts with high coking resistance and regeneration ability for the steam reforming of benzene REACTION KINETICS MECHANISMS AND CATALYSIS, 108(2), pp 459-472, 2013/4. 期刊論文, SCI, 1. 104(2012)
[13] Zheng Chen, Feng Liu, Xiaoqin Yang, Chengjin Shen, A thermokinetic description of nanoscale grain growth: Analysis of the activation energy effect, Acta Materialia (2012) 60; 4833–4844 (SCI: 2012 987KG, EI: 20123015272291) IF: 3.7550
[14] Zheng Chen, Feng Liu, Xiaoqin Yang, Yu Fan, Chengjin Shen, Analysis of grain growth process in melt spun Fe–B alloys under the initial saturated grain boundary segregation condition, Journal of Alloys and Compounds (2012) 510; 46– 53 (SCI: 2012 841RX, EI: 20114214440946 12830833) IF: 2.2890
[15] Zheng Chen, Feng Liu, Xiaoqin Yang, Chengjin Shen, Yu Fan, Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy, Journal of Alloys and Compounds (2011) 509; 7109–7115 (SCI: 2011 766OM, EI: 20112114009342 ) IF: 2.2890
[16] Zheng Chen, Feng Liu, Xiaoqin Yang, Ning Liu, Chengjin Shen, The effect of non-equilibrium δ/γ transition on the formation of metastable “dendrite core” in undercooled Fe–Cu alloy, Journal of Crystal Growth (2012) 354; 174–180 (SCI: 2013 976SQ, EI: 20123115294337) IF: 1.726
[17] Zheng Chen, Feng Liu and Chengjin Shen, A physical explanation of plateau in velocity vs. undercooling curve using a undercooled dendrite growth model , Advanced Materials Research 189-193 (2011) 3815-3818 (EI: 20111113749791, ISTP收錄)
[18] Zheng Chen, Feng Liu, Chengjin Shen, Yu Fan, Comparison between kinetic and thermodynamic effects on grain growth in nano-scale materials , Advanced Materials Research 233-235 (2011) 2439-2442 (EI 20112414059352 12434077, ISTP收錄)
[19] *Fan, Yu, Shipway, Philip, Tansley, Geoff, Chen, Zheng Study of effect on tensile stress test from distortion of fibre laser welded Ti6Al4V using FEA International Conference on Advanced Design and Manufacturing Engineering (ADME 2011), 2011/9/16-2011/9/18, pp 1889-1894, Guangzhou, PEOPLES R CHINA, 2011. 會議論文
[20] Z. Chen, F. Liu, K. Zhang, Y.Z. Ma, G.C. Yang, Y.H. Zhou, Description of grain growth in metastable materials prepared by non-equilibrium solidification. Journal of Crystal Growth, 2010, 313: 81~93. (SCI: 2010 695LV EI: 11664044) IF:1.534
[21] Z. Chen, H. F. Wang, F. Liu, W. Yang, Effect of nonlinear liquidus and solidus on dendrite growth in bulk undercooled melts. Trans. Nonferrous Met. Soc. China 20 (2010) 490~494. SCI: 2009581AO EI: 11782176
[22] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, A thermokinetic description for grain growth in nanocrystalline materials. Acta Materialia, 2009, 57(5): 1466~1475. IF:3.729
[23] Z. Chen, F. Liu, W. Yang, H. F. Wang, G. C. Yang, Y. H. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials. Journal of Alloys and Compounds, 2009, 475: 893~897. IF:2.135
[24] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, Formation of single-phase supersaturated solid solution upon solidification of highly undercooled Fe-Cu immiscible system. Journal of Crystal Growth, 2008, 310: 5385~5391. IF:1.534
[25] Z. Chen, F. Liu, H. F. Wang, G. C. Yang, Y. H. Zhou, The effect of kinetics on the stability under non-equilibrium condition. Materials Science and Engineering A, 2006, 433: 182~189. IF:1.9
[26] Z. Chen, F. Liu, G. C. Yang, Y. H. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials. Journal of Physics: Conference Series, 2009, 152: 012086.
[27] Z. Chen, H.F. Wang, F. Liu, W. Yang, Effect of nonlinear liquidus and solidus on the dendrite growth in bulk undercooled melts. Transactions of Nonferrous Metals Society of China, 2010, 20, 490~494.
[28] X.Q. Yang, Z. Chen, W. Yang, Analysis of thermal stability after occurrence of absolute solute trapping in undercooled Co-Cu alloy, International Journal of Materials Research (2013) 104; 783–788. (SCI,EI)
[29] K. Zhang, Z. Chen, F. Liu, C.L. Yang, Thermodynamic state and kinetic process, analysis of grain boundary excess in nano-scale grain growth. J. Alloys and Compounds, 2010, 501: L4~L7. IF:2.135, SCI, EI.
[30] F. Liu, Z. Chen, H.F. Wang, C.L. Yang, W. Yang, G.C. Yang, Thermodynamics of nano-scale grain growth. Materials Science and Engineering A, 2007, 457: 13~17.
[31] H.F. Wang, F. Liu, Z. Chen, G.C. Yang, Y.H. Zhou, Analysis of non-equilibrium dendrite growth in bulk undercooled alloy melt, model and application, Acta Materialia, 2007, 55: 497~506.
[32] H.F. Wang, F. Liu, Z. Chen, W. Yang, G.C. Yang, Y.H. Zhou, Effect of non-linear liquidus and solidus inundercooled dendrite growth: A comparative study in Ni0.7at.%B and Ni1at.%Zr system. Scripta Materialia 2007, 57: 413C41.
[33] H. F. Wang, F. Liu, Z. Chen, W. Yang, Solute trapping model based on solute drag treatment, Trans. Nonferrous Met. Soc. China 20 (2010) 877~881, SCI, EI.
[34] N. Liu, F. Liu, W. Yang, Z. Chen, G.C. Yang, Movement of minor phase in undercooled immiscible Fe–Co–Cu alloys, Journal of Alloys and Compounds 551 (2013) 323–326, SCI, EI.
[35] N. Liu, F. Liu, Z. Chen, W. Yang, G.C. Liquid-phase Separation in Rapid Solidification of Undercooled Fe-Co-Cu Melts, J. Mater. Sci. Technol. 2012, 28(7), 622-625. SCI, EI.
[36] F. Liu, H.F. Wang, Z. Chen, W. Yang, G.C. Yang, Determination of activation energy for crystallization in amorphous alloys. Materials Letters, 2006, 60: 3916~3921.
[37] 王海豐, 劉峰, 陳正, 楊根倉, 周堯和, 非平衡凝固條件下耦合弛豫效應(yīng)的M-S理論, 中國科學(xué)E, 37. 5: 674~685.
[38] H.F. Wang, F. Liu, Z. Chen, Dendrite growth model incorporating non-linear liquidus and solidus in bulk undercooled melts, Journal of Central South University of Technology, 2007, 14: 94~100.
[39] H.F. Wang, F. Liu, W. Yang, Z. Chen, G.C. Yang, Y.H. Zhou, Solute trapping model incorporating diffusive interface. Acta Materialia, 2008, 56(4):746~753.
[40] H.F. Wang, F. Liu, W. Yang, Z. Chen, G.C. Yang, Y.H. Zhou, An extended morphological stability model incorporating non-linear liquidus and solidus. Acta Materialia, 2008, 56(11): 2592~2601.
[41] F. Liu, G.C. Yang, H.F. Wang, Z. Chen, Y.H. Zhou. Nano-scale grain growth kinetics, Thermochimica Acta, 2006, 443: 212~216.
出版專著和教材
1 Zheng Chen, Rapid solidification and related solid-state grain growth phenomena Lap LAMBERT Academic Publishing, 2015.
教學(xué)活動
主講課程:研究生課程“先進(jìn)材料成型技術(shù)及理論”,本科生課程“材料工程基礎(chǔ)、現(xiàn)代凝固技、材料實(shí)驗(yàn)技術(shù)”。
獲得院講課比賽二等獎。
指導(dǎo)學(xué)生情況
共指導(dǎo)及協(xié)助指導(dǎo)研究生10余名:
畢業(yè)6名,其中一人獲得優(yōu)秀碩士畢業(yè)論文;
在讀6名。
共指導(dǎo)研究生發(fā)表SCI收錄論文8篇。
3人獲得中國大學(xué)生高分子材料設(shè)計大賽三等獎。
來源未注明“中國考研網(wǎng)”的資訊、文章等均為轉(zhuǎn)載,本網(wǎng)站轉(zhuǎn)載出于傳遞更多信息之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如涉及版權(quán)問題,請聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來源",并自負(fù)版權(quán)等法律責(zé)任。
來源注明“中國考研網(wǎng)”的文章,若需轉(zhuǎn)載請聯(lián)系管理員獲得相應(yīng)許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關(guān)注
了解考研最新消息
網(wǎng)站介紹 關(guān)于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務(wù) 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號